
OGR2OSM
A powerful tool for converting geodata to .osm format
SOTM-US 2012

1

About
2

 What ogr2osm can do for you

 How ogr2osm works

 A case study of a data conversion

 Why care about converting?

Why care? To avoid this
3

History
4

 Written in 2009 by Iván Sánchez Ortega

 Rewritten 2012 by Andrew Guertin for UVM

buildings

 I now maintain it

Features
5

 Can read any ogr supported data source

 .shp, .mdb, .gdb, sqlite, etc

 Reprojects if necessary – eliminates a step with many
sources

 Works with multiple layer sources or shapefile directories

 Uses python translation functions that you write to convert
source field values to OSM tags
 This allows you to use complicated logic to get the tagging right

 Documentation

Installing
6

 Requires gdal with python bindings

 Simply sudo apt-get install python-gdal git on Ubuntu

 May require compiling gdal from source and third-party
SDKs for some formats (.mdb, .gdb)

 Run git clone --recursive
https://github.com/pnorman/ogr2osm to install

 Full instructions at
https://github.com/pnorman/ogr2osm

https://github.com/pnorman/ogr2osm

Code flow
7

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Code flow
8

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Code flow
9

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Layer processing
10

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
11

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
12

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
13

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
14

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
15

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
16

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
17

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
18

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Code flow
19

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Code flow
20

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Code flow
21

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Surrey case study
22

 Shapefile fields similar to other government GIS sources

 Fields or values periodically change with no notice

 58 layers in 7 zip files

 Not counting orthos and LIDAR-derived contours

 153 MB compressed, 1.7 GB uncompressed

 Covers 187 km2

 Too much data to write conversions for without a
method

23

24

Reduce the amount of data
25

 ogr2osm will happily turn out a gigabyte .osm but good
luck opening it

 Use ogr2ogr -spat to trim the input files down

 Converting from some formats to shapefiles will truncate
field names
 Can use .gdb when coming from a format with long field names

and layers

 -spat wants coordinates in layer coordinate system
 Use gdaltransform to turn latitude/longitude into desired

coordinates

Drop layers

 Use the layer translation
(-t layer) and see what
layers should be dropped

 Most multi-layer sources
have layers that should not
be imported

 In the case of the Surrey
data filtering is done in
the script that downloads
the data

def filterLayer(layer):

 layername = layer.GetName()

 if layername in ('WBD_HU2', 'WBD_HU4', 'WBD_HU6'):

 return

 if layername not in ('NHDArea', 'NHDAreaEventFC'):

 print 'Unknown layer ' + layer.GetName()

 field = ogr.FieldDefn('__LAYER', ogr.OFTString)

 field.SetWidth(len(layername))

 layer.CreateField(field)

 for j in range(layer.GetFeatureCount()):

 ogrfeature = layer.GetNextFeature()

 ogrfeature.SetField('__LAYER', layername)

 layer.SetFeature(ogrfeature)

 layer.ResetReading()

 return layer

26

Writing a good filterTags(attrs)

 When testing you want
unknown fields to be
kept

 Delete items from attrs
as you convert them to
OSM tags

 Delete fields which
shouldn’t be converted
to an OSM tag

def filterTags(attrs):

 if not attrs: return

 tags = {}

 if '__LAYER' in attrs and attrs['__LAYER'] ==

 'wtrHydrantsSHP':

 # Delete the warranty date

 if 'WARR_DATE' in attrs: del attrs['WARR_DATE']

 if 'HYDRANT_NO' in attrs:

 tags['ref'] = attrs['HYDRANT_NO'].strip()

 del attrs['HYDRANT_NO']

 elif '__LAYER' in attrs and attrs['__LAYER'] ==

 'trnRoadCentrelinesSHP':

 # ... More logic ...

 for k,v in attrs.iteritems():

 if v.strip() != '' and not k in tags:

 tags[k]=v

 return tags

27

What not to include
28

 Duplications of geodata

 SHAPE_AREA, SHAPE_LENGTH, latitude and longitude

 Unnecessary meta-data

 e.g. username of the last person in the GIS department to

edit the object

 A single object ID can be useful but generally isn’t

 A good translation will often drop more than it includes

Identify the main field

 Convert to .osm with no
translation

 View statistics about tags

 Easiest way is to open in
JOSM, select ‐untagged,
select the tags, paste into a
text editor

 Need to look at a large
area for this

COMMENTS LC_COST RIGHTTO

CONDDATE LEFTFROM ROADCODE

CONDTN LEFTTO ROAD_NAME

DATECLOSED LEGACYID ROW_WIDTH

DATECONST LOCATION SNW_RTEZON

DESIGNTN MATERIAL SPEED

DISR_ROUTE MRN STATUS

FAC_ID NO_LANE STR_ROUTE

GCNAME OWNER TRK_ROUTE

GCPREDIR PAV_DATE WAR_DATE

GCROADS PROJ_NO WTR_PRIOR

GCSUFDIR RC_TYPE WTR_VEHCL

GCTYPE RC_TYPE2 YR

GIS_ES RD_CLASS YTD_COST

GREENWAY RIGHTFROM

NOT INCLUDED IN ROADS TRANSLATION

NOT INCLUDED IN ANY TRANSLATION

MAIN FIELD

29

The main field

 A numeric field and a text
field in this case

 Don’t trust field descriptions
when writing OSM tagging

 Always verify!

 Access Lane would be
highway=service from the
description but this would be
wrong

 Use imagery, surveys or other
sources

RC_TYPE RC_TYPE2 Count Tagging

0 Road 11375 highway=?

1 Frontage

Road
38 highway=residential

2 Highway

Interchange
54 highway=motorway_link

3 Street Lane 20 highway=service

4 Access Lane 1442 highway=?

5 Railway 28 railway=rail

30

Looking at a value in more detail

 Should be carried out
for each value, even if
you think you’re sure on
the tagging

 Look at all tags for just
those matching the field
value

 In this case search in
JOSM for
RC_TYPE2="Road"

31

RD_CLASS highway= Count

Local residential 8284

Major

Collector

tertiary 1350

Arterial primary

secondary

tertiary

1583

Provincial

Highway

motorway

primary
156

Translink unclassified 1

Even more detail

 Gets very close to OSM
tagging practice locally

 Loss of information with
Arterial MRN=No and
Major Collector both
mapping to tertiary

 Does this matter in this
case? No, road
classifications require
some judgment

32

MRN highway= Count

Yes secondary 504

No tertiary 1079

Dropping objects

 You may come across
objects that you
shouldn’t add to OSM

 In this case there are
“paper roads” in the
data

 Use filterFeature() to
remove these

def filterFeature(ogrfeature, fieldNames, reproject):

 if not ogrfeature: return

 index = ogrfeature.GetFieldIndex('STATUS')

 if index >= 0 and ogrfeature.GetField(index) in

 ('History', 'For Construction', 'Proposed'):

 return None

 return ogrfeature

33

Putting it all together

def filterLayer(layer):

 layername = layer.GetName()

 field = ogr.FieldDefn('__LAYER', ogr.OFTString)

 field.SetWidth(len(layername))

 layer.CreateField(field)

 for j in range(layer.GetFeatureCount()):

 ogrfeature = layer.GetNextFeature()

 ogrfeature.SetField('__LAYER', layername)

 layer.SetFeature(ogrfeature)

 layer.ResetReading()

 return layer

def filterFeature(ogrfeature, fieldNames, reproject):

 if not ogrfeature: return

 index = ogrfeature.GetFieldIndex('STATUS')

 if index >= 0 and ogrfeature.GetField(index) in

 ('History', 'For Construction', 'Proposed'):

 return None

 return ogrfeature

 Code presented is a

simplification and does

not deal with all fields

 Filter features and

layers

34

Putting it all together
35

def filterTags(attrs):

 if not attrs: return

 tags = {}

 if '__LAYER' in attrs and attrs['__LAYER'] ==

 'trnRoadCentrelinesSHP':

 if 'COMMENTS' in attrs: del attrs['COMMENTS']

 if 'DATECLOSED' in attrs: del attrs['DATECLOSED']

 # Lots more to delete

 if 'NO_LANE' in attrs:

 tags['lanes'] = attrs['NO_LANE'].strip()

 del attrs['NO_LANE']

 if 'RC_TYPE' in attrs and attrs['RC_TYPE'].strip() == '0': # Normal roads

 del attrs['RC_TYPE']

 if 'RC_TYPE2' in attrs: del attrs['RC_TYPE2']

 if 'RD_CLASS' in attrs and attrs['RD_CLASS'] == 'Local':

 tags['highway'] = 'residential'

 del attrs['RD_CLASS']

 elif 'RD_CLASS' in attrs and attrs['RD_CLASS'] == 'Major Collector':

 tags['highway'] = 'tertiary'

 del attrs['RD_CLASS']

 elif 'RD_CLASS' in attrs and attrs['RD_CLASS'] == 'Arterial':

 if 'ROAD_NAME' in attrs and attrs['ROAD_NAME'] in

 ('King George Blvd', 'Fraser Hwy'):

 tags['highway'] = 'primary'

 else:

 if 'MRN' in attrs and attrs['MRN'] == 'Yes':

 tags['highway'] = 'secondary'

 else:

 tags['highway'] = 'tertiary'

 del attrs['RD_CLASS']

 elif 'RD_CLASS' in attrs and attrs['RD_CLASS'] == 'Provincial Highway':

 # Special-case motorways

 if 'ROAD_NAME' in attrs and attrs['ROAD_NAME'] in

 ('No 1 Hwy', 'No 99 Hwy'):

 tags['highway'] = 'motorway'

 else:

 tags['highway'] = 'primary'

 del attrs['RD_CLASS']

 elif 'RD_CLASS' in attrs and attrs['RD_CLASS'] == 'Translink':

 tags['highway'] = 'unclassified'

 del attrs['RD_CLASS']

 else:

 l.error('trnRoadCentrelinesSHP RC_TYPE=0 logic fell through')

 tags['fixme'] = 'yes'

 tags['highway'] = 'road'

 elif 'RC_TYPE' in attrs and attrs['RC_TYPE'].strip() == '1':

 # More logic

 elif '__LAYER' in attrs and attrs['__LAYER'] == 'trnTrafficSignalsSHP':

 # More logic

 for k,v in attrs.iteritems():

 if v.strip() != '' and not k in tags:

 tags[k]=v

 return tags

Any questions?
36

Credits
37

 Background by Stamen Design under CC BY 3.0

 Surrey Data © 2012 City of Surrey under PDDL 1.0

