
OGR2OSM
A powerful tool for converting geodata to .osm format
SOTM-US 2012

1

About
2

 What ogr2osm can do for you

 How ogr2osm works

 A case study of a data conversion

 Why care about converting?

Why care? To avoid this
3

History
4

 Written in 2009 by Iván Sánchez Ortega

 Rewritten 2012 by Andrew Guertin for UVM

buildings

 I now maintain it

Features
5

 Can read any ogr supported data source

 .shp, .mdb, .gdb, sqlite, etc

 Reprojects if necessary – eliminates a step with many
sources

 Works with multiple layer sources or shapefile directories

 Uses python translation functions that you write to convert
source field values to OSM tags
 This allows you to use complicated logic to get the tagging right

 Documentation

Installing
6

 Requires gdal with python bindings

 Simply sudo apt-get install python-gdal git on Ubuntu

 May require compiling gdal from source and third-party
SDKs for some formats (.mdb, .gdb)

 Run git clone --recursive
https://github.com/pnorman/ogr2osm to install

 Full instructions at
https://github.com/pnorman/ogr2osm

https://github.com/pnorman/ogr2osm

Code flow
7

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Code flow
8

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Code flow
9

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Layer processing
10

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
11

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
12

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
13

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
14

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
15

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
16

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
17

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Layer processing
18

filterLayer()

• Allows layers to be dropped

• Allows for the creation of new
fields

• e.g. a field that indicates the
layer of a feature for later

Reproject

• Projects the layer into
EPSG:4326

filterFeature()

• Allows features to be removed

Reproject

• Projects the feature into
EPSG:4326

Convert to OSM
geometries

• Creates nodes and ways

• Only creates multipolygons if
necessary

filterTags()

• Where all the magic occurs

filterFeaturePost()

• A user-defined filtering step, not
commonly used

Code flow
19

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Code flow
20

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Code flow
21

Read in data source

• Uses python ogr bindings
to read the files

Process each layer

• Converts from ogr to osm
tagging and objects

Merge nodes

• Merges duplicate nodes

• Adjustable threshold for
distance

preOutputTransform()

• A user-defined filtering
step, not commonly used

Output XML

• Write to a .osm file that
can be opened in JOSM

Surrey case study
22

 Shapefile fields similar to other government GIS sources

 Fields or values periodically change with no notice

 58 layers in 7 zip files

 Not counting orthos and LIDAR-derived contours

 153 MB compressed, 1.7 GB uncompressed

 Covers 187 km2

 Too much data to write conversions for without a
method

23

24

Reduce the amount of data
25

 ogr2osm will happily turn out a gigabyte .osm but good
luck opening it

 Use ogr2ogr -spat to trim the input files down

 Converting from some formats to shapefiles will truncate
field names
 Can use .gdb when coming from a format with long field names

and layers

 -spat wants coordinates in layer coordinate system
 Use gdaltransform to turn latitude/longitude into desired

coordinates

Drop layers

 Use the layer translation
(-t layer) and see what
layers should be dropped

 Most multi-layer sources
have layers that should not
be imported

 In the case of the Surrey
data filtering is done in
the script that downloads
the data

def filterLayer(layer):

 layername = layer.GetName()

 if layername in ('WBD_HU2', 'WBD_HU4', 'WBD_HU6'):

 return

 if layername not in ('NHDArea', 'NHDAreaEventFC'):

 print 'Unknown layer ' + layer.GetName()

 field = ogr.FieldDefn('__LAYER', ogr.OFTString)

 field.SetWidth(len(layername))

 layer.CreateField(field)

 for j in range(layer.GetFeatureCount()):

 ogrfeature = layer.GetNextFeature()

 ogrfeature.SetField('__LAYER', layername)

 layer.SetFeature(ogrfeature)

 layer.ResetReading()

 return layer

26

Writing a good filterTags(attrs)

 When testing you want
unknown fields to be
kept

 Delete items from attrs
as you convert them to
OSM tags

 Delete fields which
shouldn’t be converted
to an OSM tag

def filterTags(attrs):

 if not attrs: return

 tags = {}

 if '__LAYER' in attrs and attrs['__LAYER'] ==

 'wtrHydrantsSHP':

 # Delete the warranty date

 if 'WARR_DATE' in attrs: del attrs['WARR_DATE']

 if 'HYDRANT_NO' in attrs:

 tags['ref'] = attrs['HYDRANT_NO'].strip()

 del attrs['HYDRANT_NO']

 elif '__LAYER' in attrs and attrs['__LAYER'] ==

 'trnRoadCentrelinesSHP':

 # ... More logic ...

 for k,v in attrs.iteritems():

 if v.strip() != '' and not k in tags:

 tags[k]=v

 return tags

27

What not to include
28

 Duplications of geodata

 SHAPE_AREA, SHAPE_LENGTH, latitude and longitude

 Unnecessary meta-data

 e.g. username of the last person in the GIS department to

edit the object

 A single object ID can be useful but generally isn’t

 A good translation will often drop more than it includes

Identify the main field

 Convert to .osm with no
translation

 View statistics about tags

 Easiest way is to open in
JOSM, select ‐untagged,
select the tags, paste into a
text editor

 Need to look at a large
area for this

COMMENTS LC_COST RIGHTTO

CONDDATE LEFTFROM ROADCODE

CONDTN LEFTTO ROAD_NAME

DATECLOSED LEGACYID ROW_WIDTH

DATECONST LOCATION SNW_RTEZON

DESIGNTN MATERIAL SPEED

DISR_ROUTE MRN STATUS

FAC_ID NO_LANE STR_ROUTE

GCNAME OWNER TRK_ROUTE

GCPREDIR PAV_DATE WAR_DATE

GCROADS PROJ_NO WTR_PRIOR

GCSUFDIR RC_TYPE WTR_VEHCL

GCTYPE RC_TYPE2 YR

GIS_ES RD_CLASS YTD_COST

GREENWAY RIGHTFROM

NOT INCLUDED IN ROADS TRANSLATION

NOT INCLUDED IN ANY TRANSLATION

MAIN FIELD

29

The main field

 A numeric field and a text
field in this case

 Don’t trust field descriptions
when writing OSM tagging

 Always verify!

 Access Lane would be
highway=service from the
description but this would be
wrong

 Use imagery, surveys or other
sources

RC_TYPE RC_TYPE2 Count Tagging

0 Road 11375 highway=?

1 Frontage

Road
38 highway=residential

2 Highway

Interchange
54 highway=motorway_link

3 Street Lane 20 highway=service

4 Access Lane 1442 highway=?

5 Railway 28 railway=rail

30

Looking at a value in more detail

 Should be carried out
for each value, even if
you think you’re sure on
the tagging

 Look at all tags for just
those matching the field
value

 In this case search in
JOSM for
RC_TYPE2="Road"

31

RD_CLASS highway= Count

Local residential 8284

Major

Collector

tertiary 1350

Arterial primary

secondary

tertiary

1583

Provincial

Highway

motorway

primary
156

Translink unclassified 1

Even more detail

 Gets very close to OSM
tagging practice locally

 Loss of information with
Arterial MRN=No and
Major Collector both
mapping to tertiary

 Does this matter in this
case? No, road
classifications require
some judgment

32

MRN highway= Count

Yes secondary 504

No tertiary 1079

Dropping objects

 You may come across
objects that you
shouldn’t add to OSM

 In this case there are
“paper roads” in the
data

 Use filterFeature() to
remove these

def filterFeature(ogrfeature, fieldNames, reproject):

 if not ogrfeature: return

 index = ogrfeature.GetFieldIndex('STATUS')

 if index >= 0 and ogrfeature.GetField(index) in

 ('History', 'For Construction', 'Proposed'):

 return None

 return ogrfeature

33

Putting it all together

def filterLayer(layer):

 layername = layer.GetName()

 field = ogr.FieldDefn('__LAYER', ogr.OFTString)

 field.SetWidth(len(layername))

 layer.CreateField(field)

 for j in range(layer.GetFeatureCount()):

 ogrfeature = layer.GetNextFeature()

 ogrfeature.SetField('__LAYER', layername)

 layer.SetFeature(ogrfeature)

 layer.ResetReading()

 return layer

def filterFeature(ogrfeature, fieldNames, reproject):

 if not ogrfeature: return

 index = ogrfeature.GetFieldIndex('STATUS')

 if index >= 0 and ogrfeature.GetField(index) in

 ('History', 'For Construction', 'Proposed'):

 return None

 return ogrfeature

 Code presented is a

simplification and does

not deal with all fields

 Filter features and

layers

34

Putting it all together
35

def filterTags(attrs):

 if not attrs: return

 tags = {}

 if '__LAYER' in attrs and attrs['__LAYER'] ==

 'trnRoadCentrelinesSHP':

 if 'COMMENTS' in attrs: del attrs['COMMENTS']

 if 'DATECLOSED' in attrs: del attrs['DATECLOSED']

 # Lots more to delete

 if 'NO_LANE' in attrs:

 tags['lanes'] = attrs['NO_LANE'].strip()

 del attrs['NO_LANE']

 if 'RC_TYPE' in attrs and attrs['RC_TYPE'].strip() == '0': # Normal roads

 del attrs['RC_TYPE']

 if 'RC_TYPE2' in attrs: del attrs['RC_TYPE2']

 if 'RD_CLASS' in attrs and attrs['RD_CLASS'] == 'Local':

 tags['highway'] = 'residential'

 del attrs['RD_CLASS']

 elif 'RD_CLASS' in attrs and attrs['RD_CLASS'] == 'Major Collector':

 tags['highway'] = 'tertiary'

 del attrs['RD_CLASS']

 elif 'RD_CLASS' in attrs and attrs['RD_CLASS'] == 'Arterial':

 if 'ROAD_NAME' in attrs and attrs['ROAD_NAME'] in

 ('King George Blvd', 'Fraser Hwy'):

 tags['highway'] = 'primary'

 else:

 if 'MRN' in attrs and attrs['MRN'] == 'Yes':

 tags['highway'] = 'secondary'

 else:

 tags['highway'] = 'tertiary'

 del attrs['RD_CLASS']

 elif 'RD_CLASS' in attrs and attrs['RD_CLASS'] == 'Provincial Highway':

 # Special-case motorways

 if 'ROAD_NAME' in attrs and attrs['ROAD_NAME'] in

 ('No 1 Hwy', 'No 99 Hwy'):

 tags['highway'] = 'motorway'

 else:

 tags['highway'] = 'primary'

 del attrs['RD_CLASS']

 elif 'RD_CLASS' in attrs and attrs['RD_CLASS'] == 'Translink':

 tags['highway'] = 'unclassified'

 del attrs['RD_CLASS']

 else:

 l.error('trnRoadCentrelinesSHP RC_TYPE=0 logic fell through')

 tags['fixme'] = 'yes'

 tags['highway'] = 'road'

 elif 'RC_TYPE' in attrs and attrs['RC_TYPE'].strip() == '1':

 # More logic

 elif '__LAYER' in attrs and attrs['__LAYER'] == 'trnTrafficSignalsSHP':

 # More logic

 for k,v in attrs.iteritems():

 if v.strip() != '' and not k in tags:

 tags[k]=v

 return tags

Any questions?
36

Credits
37

 Background by Stamen Design under CC BY 3.0

 Surrey Data © 2012 City of Surrey under PDDL 1.0

